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Abstract: Abundance, the primary criterion used for management and conservation decision-making, is very difficult 
to estimate for carnivores, especially highly mobile, wide-ranging wolves. Due to their economic and ecological 
importance to game management, society, and ecosystem health, reliable methods are necessary for wolves. The recently 
developed integrated patch occupancy model (iPOM) claims to provide improved accuracy of carnivore abundance at 
finer scales while reducing cost. We evaluate its input data models, potential biases, precision, sampling design, model 
coherence, validation, and reproducibility. Testing their method’s sensitive and vital assumptions to estimate the area 
occupied by wolf territories revealed that three sources of bias: false positive errors, closure violations, and resolution, 
combined to cause a substantial overestimation of abundance. The crucial confirmation step to independently determine 
individual wolf territorial centroids was eliminated, leading to a severe overestimation due to three sources of double-
counting errors and mortality that occurred just before and during the survey period. iPOM lacks an inferential sampling 
design and relies upon a flawed survey of hunters’ inadvertent recollections of wolf sightings. It also includes a static 
and deficient covariate model, which limits the ability to correct for the sources of overestimation bias. The variance 
method used to report a confidence interval is incorrect and omits multiple components of variation, resulting in 
substantial underreporting of uncertainty. With many recommendations for improvement, we conclude that iPOM 
produces unreliable predictions, is irreproducible, and is misleading by reporting accurate and precise abundance 
predictions when abundance is severely biased (overestimation) and imprecise. 
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1. Introduction 
Population size (abundance) is the leading criterion agencies use to manage and restore species populations and make critical 
decisions such as listing or delisting species. A reliable estimate, unbiased and precise over time, provides an efficient metric to 
account for the actions of decision-makers who can then adaptively respond and form sound policy [1,2]. This is important for large 
mammal populations, especially of carnivores, which humans have severely reduced through a loss of habitat and government-led 
eradication campaigns that began in the 18th century. Their subsequent population declines have negatively impacted ecosystems 
through density-mediated trophic interactions (see [3,4] for a review). When reliable carnivore abundance methods are embedded 
within an annual learning cycle, agencies can make adaptive decisions that effectively respond to changing conditions [2]. These 
iterations will have numerous and diverse benefits for game management and humans through the socioeconomic and ecosystem 
services carnivore populations provide [5–8], mainly through cumulative trophic pathways [9]. 

Unfortunately, large carnivore abundance is notoriously difficult to determine. Because they exist at low densities, display high 
mobility over large landscapes, are cryptic in their behavior, and exhibit aversive responses to people and to capture, they rarely lend 
themselves to complete enumeration or design-based approaches like survey sampling methods [10] that rely upon a probability 
structure inherited from randomized data collection. Instead, a model-based approach is used that depends upon assumptions of a 
stochastic model of the sample data and the sampling process [11], which can include marked or unmarked individuals. Individual 
marking of individuals or groups, like territorial packs, is highly preferred because raw unmarked counts are often misleading due to 
missing individuals that are not seen or duplicate observations of the same animal or group. Furthermore, such marking, whether 
physical, like using radio-collars and ear tags, or based on natural unique features, enables researchers to construct encounter 
histories, estimate detection probabilities, and account for detection errors by using distinguishing marks as the primary or secondary 
method (e.g., [12]). Collectively, this reduces biases caused by heterogeneous detection rates and imperfect detectability present in 
carnivore populations. As a result, nearly all carnivore studies and most mammal studies use mark–recapture and/or mark–resight 
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([13,14] for carnivores) sampling methods in a model-based inference framework. An updated review of recent and related studies on 
wildlife population estimation methods can be found in Mills et al. ([15], chapter 4). 

Wolves further exacerbate the challenges of estimating abundance because statistical models must be structured to account for high 
levels of heterogeneity in space and time owing to their complex socio-spatial behavior and seasonal response to ungulates, their 
primary prey. Furthermore, wolves do not lend themselves to the traditional, well-developed estimation methods like distance 
sampling, aerial surveys, or direct capture–recapture commonly used with vertebrate species. As a result, few reliable, transparent, 
and repeatable methods are commensurate with large carnivores’ high economic, social, and ecological importance. Thus, much more 
attention is needed to develop, test, and evaluate new statistical models for wolf population abundance with a keen focus on their 
inherent biases, measures of precision (variance), field sampling designs, and other model properties that affect the ability to make 
valid inferences, which, in turn, will provide the information required to sustain wise decision-making and avoid costly mistakes. 
Reproducible methods, data sharing, and open validation of model assumptions and output—all open to independent review and 
public debate—will enhance the governance process and benefit public trust resources. 

Here, we evaluate a newly developed method [16] called the integrated patch occupancy model (iPOM), which is representative of 
several new methods that non-traditionally apply spatial models to estimating abundance from observations of unmarked animals. 
We identify potential biases in iPOM’s numerous components by testing assumptions—biologically and statistically—and, where 
possible, determine the direction and magnitude of these biases. Because spatial models are particularly sensitive to assumptions 
regarding animal space use, we focus on iPOM’s use of occupancy modeling—its input data model, sampling design, and model biases. 
We also evaluate iPOM’s second spatial model, an agent-based simulator that predicts territory size. These two spatial models 
determine the number of wolf packs which is the effective population unit for policy and management and also provide an 
understanding of ecological interactions and their functional value [17–19]. We then evaluate and test their variance estimates used 
to report uncertainty with their calculated confidence intervals for the statewide wolf population abundance. Next, because of iPOM’s 
complexity, we assess iPOM’s alignment with model coherency and reproducibility. Finally, we provide constructive criticism on 
improvement and a framework for biologists, the broader conservation community of decision-makers, and the public to assess any 
statistical model to determine the abundance of a challenging species. 

2. Evaluation criteria 
Bias and variance are the two fundamental criteria used to evaluate the quality of any statistical method that attempts to estimate or 
predict abundance and if, when, and how it should be used. Their minimization is the bedrock of valid inference, as both contribute 
to model error (uncertainty). Although managers primarily make decisions using the numerical value of abundance (the point 
estimate), its variance is also used to reliably track and detect changes over time and communicate ranges of possibility when 
thresholds are set by policy or law. We define the term reliability as the ability of a method to provide unbiased and precise measures 
of abundance over time. High variance adds uncertainty to the point that inference cannot be made for scientifically valid decision-
making on quotas and minimum populations. 

As independent attributes, these criteria differ because variance can be directly estimated from the sample data, whereas bias cannot. 
Thus, the only means to evaluate the bias of an estimation method is to state and test the validity of the model assumptions, which 
places full responsibility on developers and users to conduct such testing. Biological and statistical testing determines the likelihood 
of a bias and whether it is a negative or positive bias (or under- or overestimates the true value, respectively). Testing can also include 
simulation testing of potential model biases to determine the direction and magnitude of bias. 

If a prediction of abundance is biased or has a high variance, then three of four possible outcomes (Figure 1) are deemed unreliable. 
If bias is ignored, decision-makers (managers, biologists, judges, conservationists, and policymakers) will likely face two outcomes 
(Figure 1C,D). Predictions become more uncertain and unreliable if the variance is high (Figure 1B,D). Even worse is a precarious, 
misleading situation when one claims the point estimate is unbiased and precise (Figure 1A) when, in fact, there is overestimation 
bias, and the variance provides false (overestimated) confidence (Figure 1D). 
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Figure 1. Four scenario outcomes for the two independent attributes used to assess the quality of an estimation or prediction method. 
Bias is the distance between the red dots and the target’s center; precision, measured by the variance, is the spread of the red dots. 
(A) is unbiased and precise; (B) is unbiased and imprecise; (C) is biased and precise; and (D) is biased and imprecise. They are 
graphically analogous to shooting a rifle at a target, where the shot taken is the value of abundance (the point estimate). If the shooter’s 
grip is shaky, then the variance (spread of shots) is higher (B,D) than with a steady hand (A,C). Bias is where the sighting of the rifle 
(curved barrel, bad scope) is “off” and shots are consistently off-center (C,D) versus on-center or unbiased (A,B). 

Another fundamental concept for evaluating a statistical model is the tradeoff between bias and variance (Figure 2). When bias is 
detected due to failed tests of assumptions, investigators appropriately respond by adding variables (called covariates) to decrease 
these biases. In turn, this increases variance and often increases model complexity. 

 
Figure 2. The tradeoff between precision and bias. Model complexity increases when investigators select parameters in the model 
(covariates) to decrease bias, which in turn increases variance given the sample data. Variance can be calculated from the sample data, 
whereas bias can only be assessed through biological and statistical testing of the model’s assumptions. Thus, testing is required to 
design a statistical model that optimizes these tradeoffs by minimizing model error (variance + bias2) with the efficient use of 
covariates—using the fewest minimally sufficient set of causal covariates that substantially reduces or eliminates biases. As the error 
of a statistical estimator increases, its ability to make inferences and successfully predict declines. 

Investigators attempt to optimize reliability by minimizing model error by carefully adding covariates assumed to be causal, 
independent, and not confounding. However, serious problems arise when added covariates do not adequately capture and account 
for heterogeneity in space, time, and behavior. We highlight in particular the problem of including static covariates that are insensitive 
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to changes in conditions under the control of investigators or policymakers. Conversely, and more problematic, is a deficient model 
where the analysis proceeds knowing causal covariates are missing [20]. Because iPOM combines submodels within multiple models 
and obtains direct and indirect samples from different populations at different times and spatial scales, we necessarily assess model 
coherence in making valid inferences. Finally, it is vitally important to ensure that a method or experiment, especially a new one, is 
reproducible—a cornerstone of science. This requires a transparent and adequate description of all methods and the sharing of data 
and analysis results from model components. 

We acknowledge that analyzing messy ecological field data reveals numerous issues, potential biases, and problems. We also realize 
that compromise is nearly always a part of this process. With recommendations, we specifically focus on essential issues that can be 
improved upon with testing, verification, revision, and retesting—the iterative cycle of gaining reliable knowledge. We aim to lay out 
a path forward that eliminates or minimizes the problems that cripple inference. 

3. Background on iPOM 
With the recent reintroduction and expansion of wolves in the lower 48 states, some state agencies have abandoned field efforts to 
individually mark wolves to estimate abundance and other important demographic parameters (litter size, pack size, survival, 
dispersal) in favor of using new lower-cost methods to infer their abundance [21–23] using spatial models that reduce or replace 
empirical field sampling. This should raise concerns about uncertainty and reliability because nearly every field study of wolves, 
including those in Montana, Idaho, and Wyoming, has investigated their demography and complex social and spatial system using a 
sufficiently large sample of distinguishable marks on individuals (natural and radio- and GPS-marking) to account for the numerous 
and complex sources of heterogeneity causing bias. As a result, sampling of marked carnivores has become a widely accepted 
consensus method for estimating demographic parameters, especially abundance [24–26]. 

Recently, Idaho and Montana eliminated a radio-collaring program for wolf population monitoring statewide and instead 
transitioned to indirect observations (hunter surveys, cameras) of unmarked animals. For example, iPOM’s goal is to integrate basic 
and applied research to provide accurate estimates of wolf abundance to inform decision-making and meet management needs while 
reducing reliance on intensive field monitoring efforts [16]. It combines three main models, area occupied (AO), territory size (TS), 
and pack size (PS), as well as additional correction factors, indices, and constants. Although [16] did not provide a coherent 
mathematical equation for wolf abundance specific to their sampling design, it did present submodel equations and an overall graphic 
illustration ([16], Figure 1) to map out how iPOM arrives at abundance. For clarity, we provide generalized equations (1 and 2) to help 
explain iPOM’s deviation from past and current methods. 

For decades, agencies have estimated abundance through field enumeration or estimating the number of packs (NP) yearly [17–19,24]. 
This sampling is verified by tracking radio-collared wolves to eliminate, or correct for, the persistent problem of double-counting 
packs, which is a common problem when relying on indirect signs (sightings, howling, scat, tracks, etc.). NP is then multiplied by 
empirical estimates of pack size (Equation (1)). Although these approaches have recently been discontinued in Idaho and Montana, 
they are currently being used to monitor wolves in Wyoming, Colorado, Oregon, Washington, and California. 

iPOM and similar models called the patch occupancy model (POM [21]) and the scaled occupancy model (SOM [22]) first deviated 
from the normal annual field sampling of wolf packs (Equation (1)) by substituting a spatial modeling approach called occupancy 
modeling to first estimate the AO by territorial wolf packs and then dividing by the mean or median territory size to calculate NP. The 
POM, the SOM, and iPOM each use different versions of occupancy modeling to estimate the AO by stable territorial wolf packs. 
iPOM goes further and drops the normal empirical sampling approach to predicting TS and substitutes a second spatial model [27] 
that simulates TS. Thus, in an apparent attempt to reduce field costs and improve accuracy [16], iPOM substitutes two spatial models 
(AO and TS) for the normal empirical field sampling for NP (Equation (1)). Finally, iPOM further departs from annual empirical 
sampling to predict pack size (PS) using a regression model [16] to determine the total number of individual wolves belonging to the 
modeled territorial packs in Equation (2). 

 (1) 

 (2) 

where N is the abundance of territorial pack members in the year i, and j designates each 600 km2 grid cell that is summed across 
Montana. To account for the assumed small proportion of lone wolves (LW) not belonging to a pack, iPOM calculates a proportion, 
converts it into a multiplicative rate (1 + LW), and then includes it in the multiplication sequence in Equation (2). It is important to 
note that random variable N is a function of four random variables, AO, TS, PS, and LW, that all contain numerous components of 
variation to be included in the variance in N used to report uncertainty. 

While iPOM should be a valid theoretical approach (Equation (2)), it is not an integrated model. Instead, it is a component model 
that combines three main models (assumed independent) in a sequential multiplicative series. Integration refers to integrated 
population models (IPMs) used extensively to estimate the parameters of wildlife populations ([28,29] for wolves in Idaho). IPMs are 
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coherent and thus have numerous advantages over iPOM, including demographic mechanisms, reconciling spatial and temporal 
mismatch, estimating unmeasured demographic rates, density dependence, and assimilating overlapping data inputs from multiple 
sources [30]. 

Because wolves are exceptionally mobile, express complex social and territorial behaviors that vary seasonally, and range widely 
across heterogeneous landscapes, we examine the sensitivity of iPOM’s spatial models that determine the territorial area a wolf pack 
observation represents. This directly affects the first two most critical of the four basic assumptions of this AO occupancy model: (1) 
the occupancy state of a grid cell remains constant between sampling times (the closure assumption); (2) no false detections of wolf 
packs—detections are representative of the wolf territories; (3) grid cells are independent spatially and temporally—the outcome of 
one survey does not influence the outcome of another survey site during the same season; and (4) a constant detection probability—
the likelihood of detecting a wolf pack is consistent across all survey sites for a given sampling occasion. Recent improvements [31] 
have relaxed these assumptions by incorporating covariate submodels in an attempt to reduce bias. However, among the four basic 
assumptions, the closure assumption is arguably the most commonly violated [32,33]. It leads to overestimation bias for wide-ranging, 
highly mobile species like wolves. Closure can be violated in two ways: geographic changes in movement (immigration, dispersal, 
extra-territorial forays) and demographic changes (deaths) during the surveys. 

To estimate the AO, iPOM uses a dynamic occupancy model [12,34] designed to correct detection errors, especially false positives 
(e.g., a detection is recorded but the wolf territory is absent). Dynamic occupancy models, first developed by MacKenzie et al. [35] 
with developments by Royle and Link [36] and Miller et al. ([34] used in iPOM), offer an initial framework for designing and analyzing 
large-scale animal distribution data. Such occupancy models reduce detection errors using covariate models that have additional 
assumptions, including those governing their selection in generalized linear models (see [37] for a review). These models allow for a 
change in occupancy between years. Still, occupancy must stay closed during the annual surveys, i.e., the territory and its spatial 
extent that observed wolf groups belong to must stay intact and remain stable, respectively, during iPOM’s late fall survey period. 

iPOM’s occupancy modeling aims to separate the underlying biological processes driving distributional changes in wolf packs from 
the observational process, which begins with surveys of hunters’ recollections of passive wolf pack observations from an unspecified 
portion of the survey units they are hunting. In iPOM, these units, called patches, are mutually exclusive, non-overlapping 600 km2 
grid cells and are pseudo-surveyed by subdividing post hoc hunter survey information into five one-week periods during the late fall 
hunting season. Wolf specialists sort through information and other indirect wolf signs to create two submodels: a critical “certain” 
data model built with unambiguous spatial observations of confirmed wolf pack territories (no false positives allowed) and an 
“uncertain” model from hunter surveys. The “certain” data model (the centroid model, hereafter) requires a confirmation step from 
a second method (e.g., tracking collared pack members) to confirm that the demarcated territory centroids are singular and unique 
from adjacent territorial packs before it is applied to estimating occupancy in uncertain and no-detection grid cells across Montana. 
Further description of iPOM’s dynamic occupancy model can be found in Miller et al. [12]. 

Territory size (TS) in iPOM is determined by a simulation model developed using NetLogo, a software environment for basic agent-
based simulations [38]. It uses numerous cost/benefit rules (each is an assumption) for patch ownership (occupancy), and territorial 
ownership dynamics are simulated for 127 packs on a grid with a cell area of 1 km2 for Montana. It then maps spatially explicit 
territories and generates TS and the number of territorial packs (NP), which is not used in iPOM. It is important to note that iPOM’s 
territory simulation model does not use any annual inputs of empirical sample data from Montana’s wolf population. To predict PS, 
iPOM uses a Poisson regression of past empirical data on wolf pack sizes [16,39] and environmental covariates. 

4. Input data and sampling design 
We found the creation of the AO data model and its sampling design to be highly problematic with numerous sources of error. Such 
errors can cause bias in all three of iPOM’s models because all use centroid information (violation of the independence assumption). 
These include assumption violations, the post hoc hunter surveys, the spatial sampling design, and the quality and timing (design) of 
the hunter surveys. iPOM’s AO data model parallels the assumptions in mark–recapture methods: detections are correctly classified 
(marks are not lost) and are correctly recorded. iPOM’s methods are far removed from the simple process in mark–recapture models, 
where these assumptions are seldom violated because the same trained individual(s) administers the distinguishable, unique mark 
and then carefully records it in near-real time (several days). In contrast, iPOM has a lengthy, arduous process, from hunter surveys 
to wolf specialists determining the quality and type (certain or uncertain) of observations used to hand-mark territorial centroids of 
wolf packs on a map. Staff and volunteers from Montana Fish, Wildlife and Parks (MFWP) primarily conduct phone interviews to 
determine a hunter’s recollection of (1) the observation type (sightings, howl, scat, carcass, tracks), (2) the correct grid cell location, 
and (3) the correct time (week). We do not see any data verification, standardized protocols, or definitions used to sort through hunter 
survey data, nor through the wolf observations and indirect signs used to create the sensitive centroid model [16], which will directly 
inflate the AO and abundance (overestimation), even with small false-positive errors [40]. 

4.1. Quality of sampled hunter survey observations 

Although there is increasing reliance on public members to contribute to data collection [41], there is a long list of potential biases in 
unstructured surveys by public members, especially when they are untrained or asked to recall observations afterwards, as in iPOM 
[16]. They plague monitoring efforts [42] and include cognitive bias leading to over-detecting a popular, charismatic, or controversial 
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species (false-positive error). Other sources of bias stem from changes in field efforts over time (observation bias), incomplete and 
selective recording by observers (reporting bias), and geographical bias and detection bias [43]. Anderson [44] questioned why one 
would survey deer hunters as a basis for inference about humans. Similarly, why would one sample deer hunters’ inadvertent 
recollections to make inferences about wolf populations, instead of sampling wolves directly? 

In addition, observations of species not traceable to tangible material, such as museum specimens or digital recording devices (e.g., 
camera traps), include biases that may render them inefficient in representing occurrence and distribution [45]. Instead, Greenwood 
[41] recommends trained, recruited, retained, and experienced observers who use standardized protocols, transparent QA/QC, and 
validation. He further recommends independence from government and conservation organizations when political or personal 
motivations are present. Altwegg and Nichols [46] state that observations by members of the public can be valuable but present 
analytical challenges due to the observation process and thus advocate strengthening inference by designing surveys with specific 
questions, analysis strategies, and data characteristics in mind. 

Unfortunately, iPOM does not recognize or adhere to the many criteria, recommendations, and concerns listed above. However, 
Miller et al. [12] did verify their initial centroid model using the rich information obtained from radio-collared wolves to ensure that 
each centroid designated a singular, unique wolf territory. Since then, this verification step has been eliminated from iPOM. Hunter’s 
ability to distinguish coyotes from wolves under field conditions using indirect methods in MFWP hunter surveys is unknown, as is 
their ability to distinguish lone wolves from pack-living wolves. Even trained biologists make errors in field estimations of wolves 
from the size of carcasses [47], let alone distant animals, which are probably sometimes seen fleetingly. 

4.2. Hunter survey sampling design and closure violations 

iPOM essentially lacks a sampling design. Sells et al. [16] did not include the criteria commonly used to develop and plan a proper 
sampling design. These criteria include the selection of appropriate spatial and temporal scales, the incorporation of information 
appropriate to the time and place (e.g., empirical pack sizes), alignment of sampling units and efforts with observational and 
ecological processes, sample size consideration, and inherent environmental heterogeneity. And in their context, we would also like 
to know more about the observers, i.e., hunter behavior, independence, and validation. We found numerous problems and 
assumption violations in the decisions they made. 

The fall timing exacerbates false-positive errors, closure violations, and errors in predicting PS. Closure was likely violated 
geographically and demographically in late fall (1) because many young adult wolves disperse from the pack then [48–50], (2) because 
non-dispersing pack members can split into smaller groups and make extraterritorial movements [48,51] prior to the formation of 
cohesive groups in the winter mating season, (3) due to mortality during the wolf hunting season, which starts in early September 
and continues through the late fall iPOM surveys, and (4) due to pack dissolution, which amplifies closure violations (see Section 5.1). 
By definition, pack size is estimated in the winter when social groups are most cohesive [52] and when 10-month-old pups are 
considered pack members [51,52]. Additionally, this adds another source of double-counting error because of the difficulty in 
distinguishing between adults and the nearly adult-sized 7- to 8-month-old pups that split off and travel together during the fall 
survey period. Finally, iPOM’s five consecutive one-week periods of observation during the fall hunting season further violate 
assumptions because they are not temporally independent of each other nor randomized, which enhances closure violations. 

iPOM used an inadvisable ‘rule of thumb’ to choose the resolution of its grid cell size to match the reported territory size of 600 km2 
[16,21]. MacKenzie [53] recommends explicitly selecting a grid cell smaller than the average home range size to ensure detection if 
the species of interest is wide-ranging and highly mobile because it could be in another portion of its home range during observations, 
especially if one does not survey the entire grid cell, as in iPOM. Furthermore, our simulations and those of Stauffer [22] indicate that 
the selection of grid cell size needs to be smaller than the average wolf territory size. Neglect of these fundamental findings inevitably 
leads to overestimation bias. 

4.3. Centroid model determination 

We found numerous problems and a lack of description in iPOM’s methods for determining wolf territory centroids, making it 
impossible to replicate. First, Sells et al. [16] asserted a “fairly certain” wolf pack centroid quality code [54]. That method was neither 
described objectively nor on a case-by-case basis. In addition, there is little description of how the eight categories in their pack 
information table [54] were used to scientifically verify or justify wolf specialists’ demarcation of pack centroids. Second, it is unclear 
whether they verified a “represented” wolf territory centroid, which must be singular and known with certainty [16]. We also find no 
description of (1) how they used seven types of information [16] to determine the spatial coordinates of a wolf territory or a centroid 
without a sufficient sample of radio-marked pack members and (2) how and if an assumed centroid was used to verify hunters’ 
observations of wolf packs. Creel [55] also recognized the logic flaw in that the AO model was developed using centroids from the 
centers of territories determined by movements of GPS-collared wolves, which are unavailable under the current version of iPOM. 
Finally, Montana Fish, Wildlife, and Parks (MFWP) admitted they did not record or archive hunter reports, making it impossible to 
verify wolf observations, validate the AO model, and reproduce iPOM. The lack of archived data by itself makes Sells et al. [16] subject 
to retraction by the policies of the journal in which it was published because effectively the source data do not exist. 
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We also identified an additional source of double-counting of wolf pack observations (the demarcation of two centroids for one 
territory), which would cause a severe overestimation bias (see Section 5.5). Without time recording and locating distinguishing 
marks from hunter reports, the authors are unaware of how many of the same highly mobile and wide-ranging wolves were detected 
in different grid cells during the 5-week survey period. As such, subgroups from a single wolf pack are recorded as separate (two or 
more) wolf packs. Such double-counting errors are widely recognized in field surveys because animals can move between neighboring 
sites on the same day [56]. The rate of double- or triple-counting the same wolves would logically increase with the time between 
surveys (up to 34 days apart in iPOM). It can be corrected using locational marking devices like radio-collaring [57], which iPOM 
lacks. For birds [58], with a similar territorial spatial system to wolves, these false-positive error rates were 49% for new (naive) 
observers when movements were eliminated in a controlled setting. With double-observers, the rate was still high at 39%, and the 
expert, experienced observer rate was 9.5%. One can only imagine the false-positive error rates reported by untrained hunters who 
inadvertently recollect their passive observations of highly mobile, wide-ranging wolves, which, moreover, can resemble sympatric 
coyotes and some domestic dogs under field conditions. Despite their claim [16], we fail to see how their AO model can correct for the 
misclassification of coyote pairs because they are sympatric with wolf packs and select for many, if not all, of their selected covariates. 

5. AO model 
Biologically and statistically, AO is the most critical submodel. Hunter survey observations and centroids constitute the sample data 
ingested annually into iPOM through the AO model, which determines the area occupied by an assumed unique set of individual wolf 
territories. With assumption testing, we identified three major sources of model bias, which are different but related to the 
aforementioned data model errors. For iPOM’s AO model, they are (1) two types of false-positive errors: misclassifications of non-
wolf canids and non-pack wolves and double-counting in their sensitive centroid model; (2) three types of closure violations during 
the 5-week late fall survey; and (3) resolution bias due to the large grid cell size. Also, AO is the primary variable determining NP 
(AO/TS) because TS is an agent-based simulator that is not independent of AO (assumption violation), does not ingest empirical data 
annually, and has as many untested assumptions as it has decision rules. As such, we only evaluated critical AO model assumptions 
that were suspected to be sensitive (non-robust to failure) and are known sources that might cause bias in AO, NP, and abundance. 
We also evaluated assumptions peculiar to the AO covariate submodel, which is required to correct for false-positive detection errors. 

To assess resolution bias, we conducted a simulation experiment to assess the potential magnitude of the well-known bias due to a 
large grid cell size (resolution). We could not complete our analysis to evaluate the size (magnitude) of the other two major sources 
of model bias, nor the overall bias in wolf abundance, because, after request, we could not obtain the needed data and analysis results 
from Sells et al. [16]. Nonetheless, we provide a qualitative assessment of each source to disentangle its relative contributions to bias. 
The extent to which their central AO model can correct for all three model biases is contingent upon assumption violations, the data 
model errors described above, and, most importantly, a proper covariate submodel, which we evaluate below. 

5.1. Additional assumption violations at the territory scale 

Here, we examine additional factors that cause bias in wolf abundance at the spatial scale of a wolf territory. They are (1) an 
inappropriate spatial sampling method for estimating the spatial extent of wolf territories and (2) pack dissolution [19,59,60], which 
amplifies the three sources of closure violations previously described (Section 4.2) and detection errors (Section 4.1) that result in 
overestimation of abundance. We demonstrate why these factors are critically important when converting annual estimates of the 
territory area (a) for each grid cell and (b) summed across the state of Montana (e.g., see Figure 3), which, when combined with the 
average TS, determines the number of wolf packs (NP in Equation (1)) each year. A corollary to closure violation for individual wolves 
is an unstated assumption that territories must be stable (closure) during the late fall survey period. 
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Figure 3. The simulation model of Sells and Mitchell [27] produced a simulated value of the total area occupied by wolf territories 
(black region). 

The fundamental assumption underlying the first factor is that hunter surveys appropriately sample grid cells to “estimate the 
proportion of grid cells used by wolf packs during the late fall” [16]. This assumption is captured in the ergodic theorem as applied to 
animal movement, which states that the average time an animal spends moving across its home range is equal to the average over the 
entire space [61]. If the MFWP’s hunter survey method were valid, this would mean wolf pack observations from hunter surveys 
constitute an unbiased, representative sample that represents the average movement process or time spent in their territories. This 
seems impossible because iPOM transfers unrecorded locations of indirect information into a single centroid rather than apportioning 
use by the location of samples and the effort invested into obtaining those observations. But even if that step could be argued to 
represent wolf territorial space use without bias, several aspects of the average hunter’s observations make it highly improbable for 
them to have reported a representative sample of wolf pack observations in a stable territory, as described in Section 4.1. This 
demonstrates the violation of fundamental rules of unbiased scientific measurement because it is a convenience sample from 
untrained observers [44]; hunters have possible motivations to exaggerate reports so that a wolf hunting season will be inaugurated 
with a higher quota; data recording errors occur, not least of which is the missing data itself; and hunters themselves affect the 
behavior of wolves, which avoid hunting activities but may be attracted later to wounded ungulate prey and gut pile odors [62]. iPOM’s 
flawed sampling process is in stark contrast to pre-designed ergodic sampling where trained biologists systematically track the 
movements of a representative sample of radio-collared wolves, which can also suffer from sampling bias when determining space 
use [63,64]. 

Pack dissolution is the second territorial factor that causes instability over large areas and violates closure assumptions both 
demographically and geographically. Typically, one-third of wolf packs dissolve after a breeding adult is killed [59,60], which causes 
abandonment of the territory (the extinction of a territory centroid) as remaining pack members disperse. Dissolution usually 
happens during the initial months following breeder loss [60], with extraterritorial movements occurring earlier. Thus, the timing, 
rate, and speed of dissolution mostly coincide with iPOM’s late fall surveys because the rate and speed of dissolution increase with a 
smaller pack size [60] due to human-caused mortality. Overall, this effect causes increased movement across the adjacent eight grid 
cells (closure violation) surrounding the dissolved pack’s cell(s). It also increases double-counting because hunters may observe 
surviving wolves dispersing or traveling in search of other wolves and mistakenly classify multiple wolves as the presence of a pack. 

A simple calculation illustrates the amplifying effect of pack dissolution on closure violation. Assume (1) an average dissolution rate 
of 40% when a human kills a breeder in smaller packs [59,60]; (2) a mortality rate of 20% for breeders ([54], Figure 9) during the fall 
hunting season (early September to December), which is before and during the 5-week late fall survey period; and (3) a population of 
1000 wolves arranged into 125 packs with a PS = 8. These starting parameters yield ~10 dissolved packs, which produce 70 non-pack, 
non-breeding wolves that disperse as solo individuals, groups of 2+ wolves, and other temporary interactions with other wolves. 
Although this is only an 8% dissolution rate, it causes a variety of movement types across grid cells (closure violation) by (1) adjacent 
pack members, (2) scattered survivors of other dissolutions, and (3) other dispersers—all searching for an opportunity to breed in 
vacated territories. Unless MFWP seeks absence data from hunter reports and compares those to prior maps of known packs, the 
agency will not detect true, newly vacated territories. 

Although our hypothetical example likely overestimates the double-counting during the fall survey, it does not include the sources of 
double-counting identified in previous sections. Furthermore, given the highly mobile, wide-ranging behavior of wolves, we suspect 
that an 8% dissolution rate affects an area as large as half the wolf range in Montana, as adjacent and more distant packs shift and 
disperse to compete for the vacant territory. It is also important to realize that the effect of killing breeders likely decreases the long-
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range dispersal (and gene flow) across populations because it provides otherwise long-range dispersers in saturated habitats, a nearby 
vacancy for a potential breeding opportunity. 

5.2. Simulation testing of resolution bias 

We simulated the effect of grid cell size resolution for multiple reasons. First, and foremost, was to isolate this known bias from the 
closure bias by using stable territories from iPOM’s TS model within a naive model where the occupancy probability (ψ) = 1.0 for any 
detection. Second, it gave us insight into how well their AO model might correct for resolution bias due to the presence of a covariate 
submodel that downsizes a grid cell area’s contribution to the AO when summed across Montana ([16], equation 6). Third was to 
explore the possible nonlinear pattern of sensitivity between resolution and overestimation bias. Fourth, we sought to understand 
how their TS simulator works, as we used it to represent the distributional dynamics of wolf territories and strengthen our evaluation. 
Last, we sought to understand the possible advantages of using the scaled occupancy argued for wolves in Wisconsin [22] compared 
to iPOM. 

The premise of Sells et al.’s [16] analysis is that their simulations generate plausible territory layouts for determining the average TS 
used in iPOM (Equation (2)). Thus, we repurposed their TS simulator to generate wolf territory maps using their code [16], repeating 
10 times to generate 10 unique sets of wolf territory maps. These served as example territories in our simulation experiment to assess 
the direction and magnitude of the potential bias. While the simulated maps do not correspond to actual wolf territories in Montana, 
they do represent realistic territorial layout patterns and suffice for our experiment. Figure 3 presents 1 of the 10 simulated territory 
datasets from the TS simulator. In this simulation, the total area of wolf territories (the black region) is 56,713 km2. Dividing this area 
by the 127 simulated packs produces an average territory size of 447 km2, which is consistent with, but smaller than, the value of 484 
km2 for the period 2014–2019 in Montana, reported in Sells et al. [16]. Oddly, Sells et al. [16] cited work by Rich et al. [65] in the 
same study area that reported an empirical mean of 600 km2, ranging from 188 to 2207 km2. Therefore, we question why they used 
the smaller, non-empirical territory size produced by a simulator. Directly related, Creel [55] exposed an error in Sells et al.’s [16,39] 
analysis of TS used in iPOM. This leads to the unjustified use of smaller TS values, which directly causes an overestimate of wolf 
abundance. 

5.3. Direction of resolution bias and closure bias in wolf occupancy modeling 

We approximate the total area occupied (AO) by wolf territories (the black area in Figure 3). We start with a grid cell overlay at the 
coarse resolution of iPOM’s 600 km2 onto the wolf territory map. Then, all cells that contain any detected wolf pack observations are 
assumed to be occupied (ψ = 1.0) and summed to produce a naive AO. Logically, this will overestimate wolf territory size because 
when a cell partially overlaps with a territory, the non-overlapping areas within that cell are mislabeled as occupied. Figure 4 
illustrates this “edge effect” at three different grid cell sizes. As grid cell size increases, so does the area that is mislabeled as occupied. 
However, it is unclear from Figure 4 alone exactly how much bias is introduced. We also wanted to describe the relationship between 
grid cell size and overestimation bias. So, for each of the 10 simulated territory maps described in the previous section, we tested 
sample grid cell sizes ranging from 1 km2 to around 800 km2. Then, we measured areal bias by computing the resulting AO values 
and comparing them to the actual area of wolf territories in the 10 simulations. 

The resulting increase in overestimation bias for AO is plotted as a function of grid cell size in Figure 5. Resolution bias is highly 
nonlinear and increases rapidly with cell size. The resolution used in iPOM (600 km2) would overestimate AO and abundance by 
around 150% (2.5×) if the dynamic model with covariates were not used, which attempts to correct for overestimation biases 
(resolution and false positives). The average proportion that a corrected grid cell contributed to AO in iPOM ~0.20, which indicated 
an 80% reduction (1 − ψ) in the AO across Montana. This also means that slight differences in the average occupancy can amount to 
significant changes in AO and wolf abundance. Even at a grid cell size of 120 km2 or 20% of the grid cell size in Sells et al. [16], the 
resultant resolution bias would cause a 50% overestimation of abundance. Due to this, deficiencies in their covariates, and a flawed 
centroid model, we doubt their 80% reduction (1 − ψ) adequately compensates for the overestimation biases we identified, and we 
encourage validation by Sells et al. [16]. 
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Figure 4. Simulation results that demonstrate the potential overestimation bias in AO at three different grid cell sizes. Wolf territory, 
in blue, is copied from the example in Figure 3. The areal component in red designates unoccupied areas erroneously included in 
the estimate of area occupied (AO). This would be the amount added to the AO if they applied a naive occupancy model (no covariate 
model). 

 
Figure 5. Simulations indicate that larger sampling grid cells (resolution) lead to overestimating the area occupied (AO). Each 
sample cell size range was tested with ten different (simulated) wolf territory maps. Like-colored points denote results from the same 
simulations. Solid red vertical lines indicate the three example cell sizes shown above, and the dotted vertical line indicates the 
resolution of the grid used in iPOM. 

Because our simulations, as well as those of Stauffer et al. [22], demonstrate the positive bias caused by larger grid cell sizes, we 
strongly suggest that iPOM incorporate a scaled occupancy model that directly corrects for resolution bias by subsampling at, say, 20 
km2 and 100 km2. The proper adoption of the SOM should avoid the many errors identified by [22]. There are also other options, 
such as dynamic scaled occupancy models [31] and structural equation models (SEMs) [66], which are inherently compatible because 
they provide means to make inferences on latent or unobserved quantities based on observed data and provide an excellent approach 
to building a non-deficient covariate model. In addition to serious problems in the AO covariate model, we further question whether 
iPOM’s AO model is conditioned properly due to a flawed centroid model. Miller et al. [12] indicated lower sample sizes in the low-
quality wolf habitat which makes up the large majority of the habitat in Montana. Because of this and Creel [55] noting that subtle 
‘tuning’ by Sells et al. [16,39] clearly shows that large expanses of areas that were not known to be used by wolves were included in 
the simulated territories, we assessed whether minor effects in a model could cause significant biases. To illustrate, take the eastern 
two-thirds of Montana, which is not considered part of the current wolf range [67], and assume ψ at only 0.025 across some 400 low-
habitat-quality grid cells, as partially depicted in Figure 1a,c of Miller et al. [12]. This alone would add 10 packs (400 × 0.025) that do 
not exist. Based on this, we recommend right-truncating the frequency distribution of the grid cell occupancy probabilities. If wolf 
specialists are able to verify a cell has a confirmed territory centroid for the “certain” model, then one can use similar biological 
knowledge to assign a zero probability. 

5.4. Covariate submodels 
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The design and parameterization of the covariate submodels dictate how any model corrects, under-corrects, or over-corrects for bias. 
As such, we found two critical problems in iPOM’s covariate submodels within their AO, TS, and PS component models: (1) deficient 
parameterization (excluding known, important covariates) and (2) the inclusion of mainly static covariates, which renders the AO 
model incapable of properly correcting for the overestimation biases we have identified. The most important and explicit assumption 
for covariate modeling is to select a minimally sufficient set of covariates (Figure 2) that independently causes the response variable 
to change. This overriding assumption was violated in all three of iPOM’s covariate submodels, which casts serious doubt on the 
ability to correct for overestimation. Especially with a new method, it is incumbent upon Sells et al. [16] to conduct simulations or 
other biological testing on whether ψ estimates the proportion of a stable territory in a grid cell. 

It is striking that iPOM’s a priori selection of covariates is misaligned with substantial research and common biological knowledge 
about wolves’ distributional and abundance dynamics [68]. The AO model excluded obvious causal covariates like snowpack, 
vegetation, and especially ungulate prey availability, which are well-known predictors of wolf space use (AO and TS), especially in 
late fall. Ungulate biomass is accepted as the primary predictor of the abundance of wolves and obligate ungulate predators [69], and 
access to forage predicts ungulate prey distributions. These covariates, including annual ungulate surveys, are available from MFWP; 
so, rather than providing a review of the problems with iPOM’s covariate models, as in [55], we give an example illustrating these 
problems. 

An example of the importance of using covariates that reflect biological mechanisms in predictive models of abundance, that includes 
numerous lessons for iPOM, is that of Moorcroft and Lewis [70], who developed mechanistic home range models using extensive wolf 
and coyote datasets, especially those that included mechanical path movements (iPOM’s TS model does not). From these models, 
Moorcroft et al. [71] specifically included prey species densities by vegetation type and were able to accurately predict the shift of one 
pack into the dissolved territory of a neighboring pack. In a blind test (independent validation), the resulting new territorial 
distribution matched that from intensive radio-tracking. Nearly the same results would have been achieved by including the ranked 
importance of the six habitat types from other studies of habitat–prey associations, for example, by using selection models for primary 
prey (e.g., elk and deer for wolves). 

A substantial amount of research conducted regionally and continentally demonstrates the tradeoff between wolf selection for 
landscape conditions that increase access to available prey, low slopes, more open habitat, and roads and avoidance of humans [72–
74]. These tradeoffs can be captured along with climate, prey availability, and vegetation for the fall survey period. Instead, Sells et 
al. [16] reduced the dimensionality of five correlated covariates to the first principal component that explains 53% of the variation. 
Hence, this deficient parameterization of the AO covariate model captured mainly the effect of accessibility to wolves by hunters. 
Additionally problematic was the static nature of those covariates (forest cover, slope, elevation, low-use forested and unforested 
roads). This severely limits the ability of the AO model to respond each year to expected changes in climate, prey availability, and 
vegetation, resulting in relatively constant model output values year after year, especially if crucial dynamic input parameters are 
excluded, as in the TS and PS models. 

5.5. Untangling primary sources of overestimation bias 

Each of the three major sources of biases we identified in their AO model—false-positive errors, closure violation, and resolution—
causes a positive (overestimation) bias when assumptions are violated. In order to understand and improve the false positives in the 
AO model, we seek to detangle them and identify their biological causation. As such, we identify three culprits that drive these biases 
to inflate the AO and subsequently overestimate wolf abundance: (1) substantial mortality before and during the late fall survey season 
leading to delineating wolf territories where none exist, (2) three sources of double-counting wolf territories when subjectively 
determining centroids, and (3) deficient and static covariate models. 

The first culprit (#1) is insidious because it severely violates closure during the surveys and adds to double-counting errors that are 
already occurring due to uncorrectable misclassifications (#2). Both types of false-positive detection errors that we identified lead to 
severe overestimation bias ([12,75] for iPOM) due to the sensitivity of the critically important assumption that iPOM’s AO centroid 
model contains only the “certain” centroids of singular wolf territories. The missing but essential confirmation step [76] should come 
from an independent source of observations similar in place and time. For example, Miller et al. [12] used data from tracking a 
sufficient sample of radio-collared wolves as confirmation in 2007–2010. Unfortunately, iPOM eliminated the confirmation step and 
used circular logic that the centroids of documented wolf packs were used in their “certain” centroid model. Wolf specialists using 
cameras, sightings, tracks, howls, verified wolf depredation sites, and “public tips” do not confirm that their hand demarcation of 
territory centroids on a map comes from “singularly” unique wolf packs because these observations suffer from the same false-positive 
biases caused by culprits #1 and #2 above. 

We cannot emphasize enough how critically sensitive AO estimates are to even small amounts of false-positive errors, especially 
double-counting, directly leading to substantial overestimation of wolf abundance. McClintock et al. [77] found that false-positive 
error rates as small as 1% of all detections caused severe overestimation of occupancy (AO), colonization, and local extinction 
probabilities, even with experienced observers [78]. In a recent study of gray fox [79], a false-positive error rate of 40% yielded an 
abundance that was 4x greater than that when accounting for false positives. The same authors conducted a simulation using intensive 
sampling within spatially separated grids and confirmed this high sensitivity: AO was also severely overestimated with only a 10% 
false-positive rate. 
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Although we could not obtain supporting data for the crucial territorial centroid data model and hunter surveys to assess the false-
positive rates in iPOM, we examined Parks et al. [54] and found evidence supporting double-counting errors. In the data from 2023, 
for example ([54], Figure 8), we noticed an unexpected clustering of centroid locations typical of those from 2021 to 2023, a period 
of liberal wolf hunting with increased mortality and no confirmation step for the centroids. We visually compared these centroid 
locations with those from an earlier period (2007–2010) when radio-collared wolves were used in a confirmation step to correct and 
determine singular territory centroids at a time at which wolf mortality was lower [16]. In the earlier period, centroids were evenly 
spaced out, which is what you would expect from nearly exclusive wolf territories averaging 582 km2 in 600 km2 grid cells. This 
pattern of even spacing even held for high-density areas indicated as saturated [12,16]. To validate this suspected clustering, we tallied 
a simple cluster statistic for 2007–2010 that resulted in an expected 4–7 grid cells annually that contained two wolf pack centroids. 
In contrast, 2023, a typical year of the later period, 22 grid cells contained two centroids, and 2 cells contained three centroids. This 
5-fold increase in clustered cells is likely due to double-counting errors (culprit #2 above). We strongly recommend that a transparent 
analysis and validation of this type be conducted and presented. 

In addition to the absence of a confirmatory centroid model, iPOM’s deficient and static covariate model (culprit #3 above) further 
limits the ability of iPOM to correct for the significant overestimation biases. Thus, we strongly recommend including the known 
causal covariates needed to correct for them. Also, updating the dynamic covariate values every year would better account for 
changing wolf distributions in the fall and allow wolf abundance to respond to annual changes in biological, climate, and landscape 
factors that affect wolf occupancy. We also strongly recommend tracking a sufficient sample of collared pack wolves (marked 
territories) to provide the second-method confirmation step required for their centroid model. This could correct for other problems 
we have identified, including double-counting errors, sampling biases, and informed colonization and extinction parameters. At a 
minimum, iPOM methods need to include tracking data from a collared subsample of pack wolves in three or four adjacent territories 
in three to four clusters across Montana to test and verify numerous critical assumptions and provide information on mortality during 
the fall survey. Another obvious solution to reduce bias is to move the wolf pack survey to the end of winter when double-counting 
risks are lower and annual mortality has mostly occurred. Then, for several reasons, trained volunteers and wolf specialists should be 
included who properly conduct designed surveys of wolf observations and wolf pack size during the standard winter period. This 
could also include the collection of scat for DNA analysis, snow-tracking, and individually distinguishable packs. Snow-track sampling 
reveals pack behavior, recovers scat, is ergodic, and matches home range determinations from tracking radio-collared red fox [80]. 

6. Territory size model 
Here, we provide a more brief assessment of model bias in the TS model because Creel [55] found an overestimation bias in abundance 
with a reanalysis of the TS predictions versus empirical estimates [39]. Creel’s analysis demonstrated that iPOM’s TS simulator output 
deflates TS by 35%, thereby inflating wolf abundance by the same amount. Using the TS simulator in iPOM is a fundamental violation 
of scientific inference because it does not ingest annual sample data from the target population of inference. It is neither an estimator 
nor a prediction and should be considered an uncalibrated index producing a nearly yearly constant value since 2012 ([54], Figure 4). 
It is non-mechanistic demographically and does not include annual mortality rates, which significantly affect TS, PS, NP, and the LW 
rate. Although we do not recommend using the outputs of their simulation model, we do not understand why Sells et al. [16] use the 
TS output when it also produces NP and AO, both used to determine abundance. Because the TS simulator depends on the total 
number of wolf packs and PS, it is circular logic to use the average territory size to determine NP in iPOM. iPOM’s TS model diverged 
further from empirical reality by developing a density identifier formula to “identify the approximate degree of competition each year” 
and “to avoid rerunning simulations every year” [16]. This is, by definition, another ad hoc correction factor occurring outside the 
original modeling procedures. Because the formula is directly tied to territorial centroids, any error or bias in hunter surveys or the 
centroid model is propagated through TS and abundance. Finally, it would behoove Sells et al. [16] to reanalyze and correct Creel’s 
[55] verification of the bias in predicting TS. 

7. Pack size model 
Similar to TS, we briefly assess the model biases of iPOM’s PS model because of Creel’s evaluation [50]. An implicit assumption in 
iPOM’s PS model is that it responds to impacts that increase or decrease pack size. This assumption is violated because their PS model 
does not ingest annual data on PS or the covariates that are known to affect it, particularly mortality. An increase in adult-caused 
mortality directly causes a decrease in pack size [54], but their PS model does not include this known effect [59,60]. In southern 
Montana and northern Wyoming, the recent increase in wolf-killing reduced pack size in five of six packs and caused the dissolution 
of two packs [19]. In addition, colonizing packs after dissolution from either natural or human-caused mortality often results in an 
initial pack size of only two that year. Collectively, these errors and omissions result in two effects: (1) an overestimation of PS, which 
directly overestimates abundance, and (2) a PS model that does not respond to the certainty of pack size reduction in the late fall and 
winter. Figure 5 in Parks et al. [54] shows no significant change after 2016, where it only varied between 5.3 and 5.4 wolves per pack. 
The data they used in their regression analysis were from an earlier period when mortality, especially from human killing [19], was 
less than that in later years. This renders their model and validation irrelevant to 2018 to 2024, when they had insufficient empirical 
data to estimate PS. Furthermore, their PS covariate model is deficient (see Section 10) and resulted in an expected constant output 
from 2012 to 2017 [54], a period in which the observed mean pack size changed by ~25%. Creel [55] also demonstrated analysis flaws 
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similar to the regression error in TS. Due to high uncertainty in the regression slope, Sells et al. [16] failed to show that their PS model 
could make meaningful predictions. We also note that their Poisson regression response variable assumes values of 0, 1, 2, and more; 
however, this distribution should be truncated at 2 or more to match the definition of a pack. As a result of these solvable problems, 
it appears their PS model is invalid, does not respond to known annual changes, and overpredicts PS and abundance. 

8. iPOM’s use of ad hoc parameters 
iPOM uses numerous ad hoc parameters and decisions (adjustments, uncalibrated indices, assumed constant values) spread 
throughout its models. An ad hoc parameter, often referred to as a correction factor, in statistical models is defined as a parameter 
specifically introduced to adjust or address a particular issue or question arising from the data analysis, rather than being a standard 
or pre-defined part of the model framework. The same goes for a subjective decision. These forms of model incoherency lead to 
various problems, including bias in model selection and comparison, model overfitting, model instability, and interpretation difficulty, 
and cast serious doubt on their ability to make valid inferences [81–83]. We highly recommend conforming to Anderson [44], who 
reviews the serious problems when using convenience sampling and indices in wildlife studies. Any proxy variable or index used in 
iPOM covariate models should be calibrated with the true covariate of interest using, for example, double-sampling theory [10]. If 
not, it produces unaccounted variance and likely bias in their models. At the end of the Supplementary Materials, we provide a partial 
list of the ad hoc parameters and methods we found. 

9. Combining components to predict abundance 
We cannot calculate the magnitude of the overestimation bias in iPOM’s prediction of wolf abundance because we do not have, or 
were not allowed, the needed empirical data. Instead, we provide a qualitative appraisal by assuming a realistic inflation of each main 
submodel and its multiplicative contribution to the overall overestimation of abundance to offer a range of probable bias. For TS, we 
use a −35% bias based on Creel’s [55] analysis. For PS, we chose a minimal +13% bias (4.7 instead of 5.3) because their annual PS 
values do not reflect biological reality. For example, increased human mortality before and during hunter surveys (including pack 
dissolution) would lower the PS as in Sells et al. [39]. Then, if we choose, say, a +33% bias for AO due to the numerous errors and 
biases we documented (closure violations, double-counting, and a deficient covariate model) that cannot be fully accounted for, we 
arrive at a 2× overestimation bias of wolf abundance. This means, for example, if the true wolf population were 550, iPOM would 
predict 1100. The overestimation bias could be higher but would not likely exceed 3.5× because double-counting wolf packs is unlikely 
to be more than double (50% of, say, 120 packs results in a minimum wolf abundance of 300 wolves (60 packs × a PS of 5)). We 
provide these calculations to encourage and guide Sells et al. [16] towards future corrections, improvements, and simulations to 
determine the magnitude of the bias. 

Furthermore, iPOM has an additional reliability problem because no empirical or independent validation of iPOM’s models and 
abundance predictions was provided. Although Sells et al. [16] compared their predictions to the POM and the minimum verified 
packs, that is not validation nor verification because one cannot use biased apples to validate biased oranges. This circular problem 
parallels the iPOM methodology developed by Rich et al. [21], who claimed that hunter survey data offers an opportunity to monitor 
wolves in Montana but provided no validation yet suggested that occupancy models using hunter sightings needed monitoring to 
verify presence. We similarly reject the assertion that iPOM’s abundance prediction has to be higher than the verified minimum 
number of known packs. Like the centroid determinations, minimum counts without tracking collared wolves in packs are plagued 
with double-counting and other errors. Finally, an important assumption—the independence of the models—is violated because the 
TS and PS models are linked to centroid determinations in the AO model, and the TS model includes data used in the AO model. 

We also use a simple assessment of iPOM’s output to test whether its use of (1) static and deficient covariate submodels, (2) constant 
ad hoc parameters that actually vary annually, and (3) substantial changes in methodologies and input data (e.g., centroids) causes 
iPOM to produce relatively constant abundance estimates after 2016 when wolf abundance peaked. Visual inspection of the reported 
results on the AO, TS, and PS for 2007 to 2023 ([54], Figures 3–5) raises red flags and supports our contention and that of Creel [55]. 
Two distinct patterns are apparent: (1) dynamical changes during 2007–2016 when it appears that a proper centroid model was used 
and (2) relatively little change from 2012 to 2023, when iPOM’s methods changed substantially, a radio-marking and tracking 
program for determining abundance was eliminated, and wolf mortality increased substantially due to public hunting and trapping. 
As expected, in the last 12-year period (2012–2023), both TS and PS are statistically constant, varying by around 2–3% [54]. AO did 
show some variability that was governed by two factors: (1) annual hunter surveys and MFWP wolf specialists determining the 
centroids and (2) an ad hoc density indicator formula tied to the centroids. Nonetheless, the overall wolf abundance did not change 
in six of seven regions from 2012 to 2023 ([54], Figure 6). 

10. iPOM’s variance 
We found numerous problems with iPOM’s estimates of variance used to report the confidence interval for statewide wolf population 
abundance. Major problems were two-fold: (1) iPOM’s method for estimating variance is incorrect because it does not estimate 
abundance but predicts it and (2) the exclusion of components of variance (input variables), which resulted in a severe underreporting 
bias and the inability of iPOM to detect a change in abundance. They also made a mathematical error in the variance in their lone 
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wolf rate, LW (Supplementary Materials). Each of these problems causes underreporting (bias), which, when combined, results in a 
severely underreported confidence interval. 

First, proper iPOM predictions have wider prediction intervals than the incorrect confidence intervals Sells et al. [16] used for 
parameter estimation. Although we were unable to obtain the data sources for each of the iPOM’s stated main variables (AO, TS, PS, 
and LW) to calculate a proper prediction interval, we started with the derivation of variance (and CVs) for each primary input variable 
as a reality check on possible underreporting biases. We then calculated a Delta method variance to approximate the relative 
magnitude of the exclusion bias in iPOM’s variance used to report the confidence interval (CI) for wolf abundance (Supplementary 
Materials). 

iPOM’s prediction of wolf abundance is a random variable and not an estimated parameter. Estimation and prediction are distinct 
but related concepts in statistical modeling, each serving different purposes and using different methods. As such, there is a 
substantial difference between estimating a parameter (e.g., abundance from a design-based survey sampling) and predicting a 
random variable (e.g., abundance for a model-based design that often includes covariates). Estimation focuses on estimating 
unknown parameters of a model using existing data. Prediction involves a prognostic outcome where the model is constructed to 
predict for different conditions across space and/or time and uses new data inputs (e.g., relevant covariates) not included in the 
original sampled data. Also, when estimating a parameter, such as the population abundance for a particular area (e.g., Montana), as 
the sample size increases (e.g., more individuals are counted), the information about a parameter increases, and the uncertainty about 
its value decreases; if all animals are counted, then the uncertainty decreases to zero. However, for predictions of population size, as 
the sample size for the sampled area increases, uncertainty about the prediction for unsampled areas does not decrease to zero. The 
same holds for iPOM’s prediction of total abundance. See [84,85] for a detailed discussion on predicting versus estimating the total 
of a finite population. 

Second is exclusion bias. Logically, excluding input variables when determining variance leads to underestimation of uncertainty, 
whether calculated directly, approximated linearly (e.g., the Delta method), or calculated using Monte Carlo simulation [86]. 
Including all key input variables in iPOM—AO, TS, PS, and LW and their covariate submodels—is necessary to capture uncertainty 
propagation across space and time. Such exclusion errors will result in severe underreporting (bias) of the prediction intervals. Sells 
et al. [16] omitted the variance in (1) the entire TS model, (2) the entire covariate models, (3) the covariates in the AO and PS 
submodels, (4) numerous ad hoc correction factors and methods, and (5) the covariance between their main models. Even if the 
application of a credible interval were appropriate, the uncertainty (variance) of iPOM’s abundance estimate would still result in a 
misleading underestimation of the true variance in wolf abundance. According to scientific principles, a credible interval would need 
to include at least the major components of variance contained in the random variables of their multiple models and multiple 
submodels by constructing a joint posterior distribution over all relevant parameters [87]. 

An example of omitting variation in their covariate models is the exclusion of the variance in their ungulate density index and human 
density, which are based on sampling and estimates for small areas that are then used to project the predicted density across larger 
areas. At a minimum, estimates of the variance in or distributions of the ungulate density index for different regions and a variance 
for human densities should be included in the territory size model. More problematic for their TS predictions is that their highly 
theoretical territory formation model is based on model agents assessing whether territories were economical and adjusting TS 
according to model rules about theoretical competition costs due to theoretical neighboring wolf packs. iPOM’s abundance estimate 
did not include these substantial variance components, which consists of rules with no reported empirical data; the rules were 
calibrated by matching the model results with desired wolf densities. Similar exclusion errors occurred in their PS and later AO models. 

To determine the minimum magnitude of the underreporting bias in iPOM’s variance used to determine the CI [16], we include the 
variance in empirically derived input values using the Delta method [88]. As a reality check, to start, we examined the sensitivity of 
iPOM’s variance to exclusion bias by adding the proper variance in a model component, LW, using the empirical samples in Sells et 
al. [16]. We concluded that iPOM’s CI was unrealistic because the CV for LW at 10.2% was larger than iPOM’s CV of 5.5% for wolf 
abundance (Supplementary Materials). Based on this, we proceeded to examine the main model components, AO, TS, and PS. 

Although we could not obtain the actual sample data, we evaluated the exclusion biases in iPOM’s variance (and CI) estimate further 
by first determining the components of variance in its main input variables by (1) using calculations for AO as we did for NP, (2) 
extracted empirical data values by reading them from Figures 1.8 and 1.16 in Sells et al. [39] for TS and PS, and (3) using the LW 
variance above (Supplementary Materials). The resultant CVs for their main model components AO, TS, PS, and LW were 4%, 72%, 
45.3%, and 10.2%, respectively, compared to iPOM’s CV for wolf abundance at 5.5%. 

We then proceeded to estimate the Delta method of variance (Supplementary Materials) for wolf abundance using iPOM’s variance 
for NP (var = 79.7 for 161 packs) and the LW proportions (var = 0.039, mean = 1.120), combined with our variance estimate for 47 
pack size samples (var = 6.5, mean = 5.63). The result was an abundance of 1016 wolves with a CI of 0 to 2243 and a CV of 45.3% (an 
8.4× underreporting bias), demonstrating iPOM’s inability to detect any change in wolf abundance. The true variance (and 
underreporting bias) in wolf abundance would be even higher because our minimum approximation does not include (1) a proper 
prediction interval, (2) the variance in the excluded covariate submodels, (3) covariance due to violation of component model 
independence, (4) spatial and temporal mismatch of the variables, and (5) uncalibrated indices and ad hoc correction factors. Also, 
iPOM’s variance for NP does not appear to include the variance from TS because its CV (72%) is much larger than 5.5%. However, we 
recommend, of course, that Sells et al. [16] transparently calculate and share a proper prediction interval, along with all of the data. 
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11. Coherence and reproducibility 
The question “how good is your science?”—whether experiments or statistical models—can be answered by “how well it predicts”. 
This also measures the strength of inference [89]. For statistical models, predictions are evaluated by determining bias (assumption 
testing) and variance (Figures 1 and 2), as well as model coherence and reproducibility. Without an assessment of these attributes, 
iPOM can neither be considered scientific nor its predictions reliable. 

11.1. Coherence 

Although model coherency is an essential attribute for a complex model like iPOM, it has several different but related meanings. In 
predictive models, coherency ensures the reliability of statistical inference through alignment with the study objectives and design, 
consistency in data aggregation, and data sharing between submodels and across levels [90]. The concept also includes covariate 
models in probabilistic judgments in Bayesian ecological modeling approaches [91], inference in evolution [92], and AI language 
models [93]. In population modeling, hierarchical and integrated population models are explicitly coherent because they are 
structurally designed with integration mechanisms across domains and levels, allowing for consistent integration and harmonization 
of different datasets within a single inferential framework [28,30]. Taken together, a coherent statistical model reflects how samples 
can be consistently brought together with other information within a model or between models under one broader analytic framework 
(e.g., iPOM). Thus, coherency is an intentional, consistent, and logically structured approach where all model components and data 
align and flow harmoniously from start to finish (design, sampling, data model, process model, explicit and implicit assumptions, 
covariates, and output). Based on these characteristics, iPOM lacks nearly every feature and step in the structure and process needed 
to develop a coherent model. iPOM’s lack of an explicit mathematical equation—a stochastic model of the sample data and sampling 
process—that defines each unknown parameter and its corresponding spatial and temporal units is indicative of an incoherent model. 
Rather, iPOM attempts to combine, not integrate, model components. 

The most flagrant violation of coherency is iPOM’s ingestion of information from outside the population for which it is making 
inference. For example, iPOM ingests values from the TS simulator, not empirical sample values from Montana’s wolf population. 
Such a mismatch causes bias and results in misleading inference [11]. This also holds for iPOM’s Monte Carlo simulations because 
iPOM’s data resampling efforts include data from populations outside of Montana or from a different time period [16]. Second, iPOM’s 
submodels are incoherent within themselves. The TS and PS models (and LW rate) do not ingest concurrent annual inputs of 
empirical samples from Montana’s wolf population. If iPOM’s AO model dynamic [12] had included (1) a coherent link to a properly 
designed and sampled data model, (2) a centroid model from a sufficiently large sample of representatively sampled radio-marked 
wolf pack members, and (3) a non-deficient covariate model of known, causal covariates, it would be considered coherent but only as 
a stand-alone submodel disconnected to the TS and PS models. Finally, iPOM’s covariate models do not ingest annual inputs from 
surveyed areas, and inferential yearly predictions are not valid. Because of this, it is no surprise that iPOM produces relatively constant 
values yearly (since 2016) but with some variation due to flawed hunter surveys and subjective centroid locations. We found numerous 
cases of spatial and temporal mismatch within iPOM’s covariate models and between them and the response variable. Such mismatch 
or oblique problems are also pointed out by Creel [55] and lead to unreliable and potentially misleading conclusions because the 
covariates may not accurately capture the conditions influencing the response variable at the time and location of the observations 
[94,95]. 

11.2. Reproducibility 

Reproducibility is a fundamental hallmark of science related to falsifiability. Just as scientific hypotheses and theories must be subject 
to falsification or considered unscientific, a research finding must be repeatable, or it cannot be regarded as reliable. Much attention 
has been paid to failed efforts at replication [96,97]. Here, we address the prerequisites for the replication attempts applied to iPOM’s 
findings [16]. 

Before a specific finding can be replicated and confirmed by qualified investigators following every step of the original methods, 
reproducibility demands two tests of the original findings [98–100]. The first test is whether the procedures were described so that a 
replication effort stands a chance of succeeding. If the methods are incomplete, unclear, or impossible to repeat, one cannot succeed 
in replication. IPOM fails this, as Sells et al. [16] include subjective methods (hand-drawn centroids with subjective placements) or 
unexplained methods (e.g., hunter surveys). The second test is whether the data underlying the original finding exist. If the data does 
not exist, they cannot support the original claim. Both tests fail for Sells et al. [16], yet the missing data concern us the most. The lead 
author of this paper had to pursue multiple private communications with the senior author Sells and other coauthors to elucidate the 
missing steps and data, yet guesswork remains over 2 years since those communications began. Whether the methods can be 
explained remains uncertain and is undoubtedly unanswered by the published article. Therefore, we call for a correction or editorial 
flag of caution about Sells et al. [16] at a minimum. Correction may give way to a need for retraction if the second test also fails, as 
described next. 

Essential input data in Sells et al. [16] are hunters’ observations of wolves. They represent the primary source of empirical 
observations of the current presence of wolves on the Montana landscape. Even though such observations cannot be verified to be 
true wolves, the survey method used to collect those data has not been sufficiently described and is therefore irreproducible. As such, 
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one cannot rule out, or correct for, double- or even triple-counting. We do not know the standardized methods of collection or quality 
control steps. Worse, the survey data do not exist, according to communication from MFWP. In sum, the primary empirical data 
based on which wolf abundance was estimated in Sells et al. [16] appear not to exist anymore. If Sells et al. [16] do not confirm to the 
editors that the data exist, this would be grounds for retraction according to journal policies and the Ecological Society of America’s 
code of ethics for authors. It also frustrates our efforts at replication and improvement. That claim of open data also demands a 
correction or published notice of concern by the editors. Therefore, we conclude that iPOM as it currently reads is irreproducible and 
unscientific and merits retraction. 

12. Conclusions 
For a variety of reasons, wolves are a poor candidate species for the application of occupancy modeling. Their high mobility and wide-
ranging behavior ensure violation of sensitive assumptions that lead to overestimation bias, especially geographic closure. 
Furthermore, their complex social behavior, adding to already high spatial and temporal heterogeneity as they traverse complex 
landscapes, makes it difficult at best to correct for detection errors with covariate models. Yet tantamount to these issues is the 
fundamental mismatch between a complex statistical model proposed for population demography—iPOM’s abundance over time—
and the incorporation of two spatial models developed for non-demographic applications. Occupancy modeling was designed to 
determine species distributions and habitat relations, whereas iPOM’s TS simulator is a theoretical agent-based model for simulating 
territorial behavior. It is important to note that Smith and Boyd (the latter co-author with Sells et al. [16]) concluded that iPOM 
should not be used to determine wolf abundance and that alternative methods like genetic capture–recapture should be applied [101]. 

The shoe-horning of iPOM’s main models resulted in an incoherent mash-up of model components that lack several foundational 
principles governing inference, any one of which invalidates its use in wildlife decision-making. Based on our evaluation criteria, 
extensive assumption testing, and the concepts governing valid inference, there is overwhelming evidence that iPOM is unreliable. A 
federal court agrees with this conclusion on largely independent and qualitative grounds (Center for Biological Diversity et al. and 
Western Watersheds Project et al. v US Fish and Wildlife Service et al. 2025. U.S. District Court for the District Of Montana, 9:24-cv-
00086-DWM Doc 98, hereafter CBD & WWP v FWS 2025). Although we could not estimate precisely the magnitude of the bias in 
iPOM’s abundance predictions, the evidence indicates a severe overestimation bias. At this point, we do not know the wolf population 
size (abundance) in Montana, and iPOM’s variance and CI are so severely underreported (at least an 8.4× bias) that iPOM cannot 
detect a change in abundance. This results in the worst-case scenario for managers and wolves: decision-makers are misled because 
Sells et al. [16] claim accurate (low bias) and precise estimates (Figure 1A), when iPOM yields neither (Figure 1D). Sells et al. [16] 
also arrived at an uncommon situation in statistical modeling where the addition of covariates failed to minimize bias (Figure 2), 
thereby increasing both the variance and model error. iPOM further detracted from biological reality by (1) using an incorrect 
statistical analysis for their PS and TS models which, again, resulted in overestimation bias; (2) using numerous ad hoc correction 
factors [44]; and (3) excluding substantial sources of variance in their input variables that ensured that iPOM cannot detect a change 
if abundance declines to less than 150 individuals. Again, the court (in CBD & WWP v FWS 2025) ordered the FWS back to the 
drawing board to use the best available science to address the adequacy of state regulatory mechanisms. The court expressed concern 
over the inadequacy of Montana’s regulatory mechanisms to keep wolves from being put back on the federal list of endangered species. 

IPOM’s lack of the sampling design needed for reliable predictions is at odds with 21st century standards and strong inference. At its 
core, iPOM’s goal was to use hunter information as its primary data source to estimate the fraction of a grid cell that belongs to a 
singularly identifiable wolf territory, yet the “sample” data are from surveys of deer and elk hunters. If those data can be recovered, 
they nevertheless come from a set of untrained individuals of unknown independence from each other, who had to recollect the spatial 
and temporal accuracy of their observations of assumed wolf pack members. They (1) inadvertently and incompletely sample grid 
cells that are too large, (2) miss entire grid cells, and (3) fail to provide the representative sampling needed to estimate the space use 
of wolves belonging to stable territorial packs during the late fall 5-week sampling period. IPOM’s approach cannot correct these 
sampling biases, even with the crucial confirmation step (proper centroid model) from a sufficient sample of collared wolves from 
confirmed packs at that time. Moreover, the difficulty classifying wolves as pack members and their natural spatial instability in late 
fall are amplified by the killing and disintegration of packs before and during the survey period. 

Although the original application of iPOM’s AO model during the early 2007–2015 period appeared to correct partially for the three 
major overestimation biases identified (false-positive errors, closure violation, and resolution), an insufficient number of radio-
collared wolves and increased mortality after 2015 ensured violation of the highly sensitive confirmation step and the sensitive closure 
assumption, respectively. Together, this resulted in severe overestimation of abundance. In addition, the potentially corrective 
covariate model was deficient and contained static covariates, which limited its ability to correct for overestimation biases and 
resulted in a constant annual output after 2015, when the environmental conditions changed. Here, too, the CBD & WWP v FWS 2025 
court chided the FWS for relying on population size forecasts that did not make use of all of the available information on Montana’s 
wolves through 2023. 

Sells et al. [16] did achieve a part of their primary goal to substantially reduce their reliance upon expensive empirical field sampling 
of wolves. However, in doing so, they ensured the failure of their overriding goal to produce reliable predictions of wolf abundance. 
Even more problematic is their claim [16] that valid inference can be made without including sample data from the population of 
interest [55]. There will always be significant model errors and weak inferences when information comes from sources not belonging 
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to the sampled population. Perhaps the most considerable lacuna is iPOM’s exclusion of annual mortality, which is known to affect 
the primary input variables, AO, TS, PS, and LW, and demographic rates of wolves, such as dispersal, emigration, reproduction, and 
recruitment. These demographic forces might be especially strong in late fall when the surveys are conducted. 

Regardless of whether or not iPOM can achieve reliability, we strongly recommend comparing its costs and reliability to alternative 
methods. Any comparison should be weighed against the economic benefits minus the costs of large carnivore populations, especially 
the ecological function of wolves in naturally forming larger packs [19]. In a recent review of population abundance models, Iijima 
[102] agreed with Royle and Dorazio [103] and Kery and Royle [104] that recent advances in hierarchical modeling should become a 
fundamental standard framework for the development, testing, and application of abundance methods because they provide a 
coherent structure and process. As a result, and because of the exceptional difficulties in monitoring carnivores and the need for 
reliability, recent investigators are simultaneously combining two independent methods for abundance estimation, one of which 
requires individual identification (e.g., [105]). Even SECR models, considered the recent gold standard for estimating carnivore 
abundance, can not be reliably used without at least a substantial subsample of marked individuals [106]. There are also reliable and 
robust capture–recapture models that can be applied using various methods that do not require physical restraint of wild individuals 
[107,108]. Individual marks can be derived from DNA analysis and unique natural markings from confirmed photos and resighting 
observations. With low-cost delivery systems, there are also biochemical scat markers such as iophenoxic acid [109], chlorinated 
benzenes [110], and isotopes, both stable and unstable [111]. Additional research could result in the delivery of visible dye marks and 
patterns using drones or autonomous ground devices. In particular, non-invasive scat detection may be well worth revisiting in light 
of genetic, laboratory, and field innovations that have reduced the costs of individual detection [112]. A recent method for successful 
genetic mark–recapture for wolves [113,114] is currently being tested in Montana, with encouraging preliminary results. Additional 
biological information valuable to wolf management and conservation comes from non-invasive techniques identifying individuals 
[115–119]. 
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Supplementary materials 

Evaluating the variance in estimates of wolf population size (abundance) in the state 
of Montana for the integrated patch occupancy model (iPOM) 

1. Summary 
The integrated patch occupancy model (iPOM) was created to estimate the abundance (population size) of wolves (Nwolves), where a 
patch is a wolf management area that is ‘sampled’ by hunters [1]. For each patch, abundance estimates were derived by combining 
the probability of patch occupancy, predicted territory size, predicted number of packs, predicted pack sizes, and a lone wolf rate. The 
total abundance (Nwolves) in a given area is the sum of all fractional abundance estimates from each patch (600 km2 grid cells). Here, 
the variance, reported as a confidence interval (CI) in iPOM [1], is evaluated for estimates of the total Nwolves in Montana, with 
information presented in two reports [2,3]. Since iPOM was used to project population size from sampled areas to the entire state, 
prediction intervals should be used rather than confidence intervals. Because we could not obtain their data to reproduce their CI or 
produce a prediction interval, we evaluate the accuracy of their confidence intervals here. This evaluation is not an attempt to estimate 
the exact variance in wolf abundance but rather a common-sense check to determine whether the CI reported in the report was 
realistic. The main findings of this work were 

• iPOM uses mechanistic and retrospective predictive models to estimate Nwolves in Montana. These models are inappropriate for 
projecting predicted point estimates of wolf population size across the state from sampled areas much smaller than the entire 
state. 

• If iPOM is to be used to project estimates of Nwolves across the entire state and/or forward a year(s) to set harvest regulations, a 
more general approach that uses distributions of the territory size and pack size should be used to include the uncertainty in the 
predictions. This is akin to how typical population projection modeling is undertaken, such as for population viability analyses. 
The intervals from this approach are prediction intervals. 

• iPOM omits numerous components of variation from the variance estimate used to report a confidence interval. Such exclusion 
biases result in a severe underreporting of uncertainty (variance). 

• Based on a Delta method evaluation, the confidence intervals for the estimated Nwolves in Montana are unrealistically small and 
severely underreported. 

• Based on the confidence intervals presented, the approximate coefficient of variation for Nwolves in Montana averaged at about 
5.5%. The Delta method indicates that the coefficient of variation should be at least 47% (≥ 8.5𝑥) 

• For example, the estimate of Nwolves and its confidence interval for 2010 were 1145 (1024–1280). If the coefficient of variation 
were within the 47% range indicated by the Delta method, the confidence interval would be approximately 85–1946 wolves. 
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Given this high uncertainty in variance, iPOM cannot achieve detection if the population drops below 150. It is doubtful that 
iPOM can detect any change in abundance. 

• In particular, the mechanistic model for territory size contains a multitude of untested assumptions and nonexistent data that 
make it unreliable and prone to producing unrealistically small estimates of variance. 

• Due to mathematical errors, the application of the wrong variance measure, and the exclusion of the variance in numerous 
components (input variables), iPOM produces unreliable results incapable of management decision-making. 

Here, we test and approximate the confidence intervals in iPOM’s estimate of Nwolves by calculating the Delta method variance used 
to report confidence intervals (CIs). This evaluation is not an attempt to estimate the exact variance in Nwolves but rather a common-
sense reality check and a determination of the approximate variance for Nwolves. However, even if the CIs are realistic, this is not the 
correct interval for Nwolves. A prediction interval should be used because Nwolves is projected across the entire state based on smaller 
sampled areas. 

We started by calculating the variance (and CVs) in each of their four main input variables [1], AO, TS, PS, and LW, for the initial 
assessment and a comparison to iPOM’s CV in the wolf abundance from the CI that they reported. We then use an average year’s 
variance for iPOM’s NP and LW (corrected) and the empirical values for PS from Sells et al. [2] to approximate the minimum variance 
in Nwolves (and resultant CI) using the Delta method [4]. The Delta method is used when an estimate (wolf population abundance in 
this case) is a function of multiple estimates; the sampling variance of the new parameter is also a function of the sampling variances 
in the component estimates. The statistical terms used in this report include the coefficient of variation (CV), standard error (se), and 
variance in the estimates of wolf population abundance, which are related as 

𝑠𝑒 = 	√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒,  

𝐶𝑉 =	 !"	("!%&'(%")
"!%&'(%"

,  

where est = the estimate. So, for Nwolves, the CV is 𝐶𝑉5𝑁7*+,-"!8 =
!"(.*+,-"!)
./!"#$%&

. 

Because no estimates of variance were provided, we used CIs to approximate se as 

𝑠𝑒 = 	
(𝑈𝐶𝐼 − 𝐿𝐶𝐼)
(2	 × 	1.96)   

where UCI = the upper CI and LCI = the lower CI. This equation is based on an assumption that the CI is symmetrical; i.e., 
UCI(𝑁𝑤𝑜𝑙𝑣𝑒𝑠) = 𝑁7*+,-"! + 1.96 × 𝑠𝑒5𝑁7*+,-"!8, 𝐿𝐶𝐼5𝑁7*+,-"!8 = 	𝑁7*+,-"! − 1.96 × 𝑠𝑒5𝑁7*+,-"!8. This is not exactly true for iPOM because 
estimates of wolf abundance are based on distributions of sampled packs (through occupancy and territory size) and pack size, which 
are not symmetrical. However, approximating se from the 95% CI will be close and sufficient for a reality check of the variance 
estimates presented in the final report. That is, the CV based on the Delta method will not be exactly the same as that from the 
simulation approach iPOM uses, but they should be relatively close. If anything, variance and CIs based on the Delta method should 
be biased low because they are based on symmetrical distributions and may miss some of the larger unsymmetrical numbers in 
distributions. 

The variance in Nwolves, which is directly related to the CIs for Nwolves, was estimated from estimates of patch occupancy, territory sizes, 
and pack sizes, each with its variance, and this variance was propagated in the multiplication and division required to estimate Nwolves. 
iPOM’s Nwolves is predicted using a combination of retrospective and mechanistic models. The final equation used to predict Nwolves in 
the iPOM report [2] was 

Nwolves = Npacks x packsize x lonerate  

where Npacks is the estimated NP, packsize is the estimated PS, and lonerate accounts for non-pack lone and dispersed wolves or LW. 
Note that the estimates for NP and PS are based on additional sub-equations, yet we used this final equation as a common-sense 
reality check on the variance estimates of Nwolves in iPOM. The CI derived from the Delta method variance approximates but would 
be less than the prediction interval (PI) for iPOM. We began by estimating the variance in N, the estimated number of wolves, using 
the Delta method based on the final equation above. The Delta method equation for the variance in 𝑁7*+,-"! with the iPOM formula 
above, assuming independence (no covariance between estimates of NP, PS, and LW), is 

Var 𝑁7 =		𝑣𝑎𝑟 5𝑁𝑃I 8𝑥5𝑃𝑆I	𝑥	𝐿𝑊I 82 		+	𝑣𝑎𝑟 5𝑃𝑆I8𝑥5𝑁𝑃I 	𝑥	𝐿𝑊I 82 + 	𝑣𝑎𝑟5𝐿𝑊I 8𝑥5𝑁𝑃I 	𝑥	𝑃𝑆I 82  

In Table 1.7, Sells et al. [2] provided annual estimates of NP and its 95% CI. Because estimates of variance were not provided, we 
calculated the approximate se for NP as described above. The resulting approximations of se were used to estimate the variance in 
the estimates (i.e., variance = se2) used in the Delta equation. The estimate for LW was modeled for all years as having a mean of 1.125 
and a standard deviation of 2.25 ]. This was incorrect; the lone wolf rate was estimated from Table 6.1 of Fuller et al. [5], and Sells et 
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al. [2] added 1 to the proportions of non-resident wolves and incorrectly applied the variance in the proportion to the larger value. 
They should have used the proportions directly. The proportions from Table 6.1 below yield a mean lone wolf rate = 0.120, a variance 
= 0.039, and a CV = 10.2%, which were used in the Delta method calculations. 

Table S1. The proportion of non-resident wolves (i.e., proportion of lone wolves in the population) from Table 6.1 in Fuller et al. 
[5]. 

% Non-resident Prop non-res 
14 0.14 
10 0.1 
20 0.2 
7 0.07 
9 0.09 
9 0.09 
10 0.1 
12 0.12 
13 0.13 
16 0.16 

Note, the standard deviation of the LW estimate in this case is se; we use the term se; both terms are used in the literature, but se is 
appropriate for this proportion (i.e., the standard deviation of an estimate is se). 

iPOM’s annual estimate of PS drew a random value from the group size distribution, based on the predictive PS model for each iPOM 
grid cell (patch) each year. The resulting mean and se for each grid cell for each year were apparently used to create gamma 
distributions that were spatially and temporally explicit estimates of pack size and its uncertainty. For a statewide estimate, and 
because iPOM used empirical samples for LW [5], we extracted one representative year by rounding 1/14 of the column values of the 
empirical pack sizes from their data in Figure 1.15 [2], as illustrated here as Figure S1: 

 
Figure S1. Empirical pack sizes modified from Figure 1.15 in Sells et al. [2]. The mean was 5.63 with a variance of 6.5. 

We calculated the variance in the area occupied (AO) using the same method as that for NP, using Table 1 in Parks et al. [3] for the 
years 2007–2023. The mean AO was 67,812 km2 with a variance of 7,206,212. We extracted the 33 empirical data values from Figure 
1.8 [2] for TS. They were (in km2) 180, 210, 250, 250, 250, 270, 270, 270, 280, 350, 360, 390, 420, 460, 460, 480, 480, 510, 530, 
540, 620, 620, 630, 650, 810, 830, 840, 860, 910, 1030, 1040, 1840, and 2230. The calculated mean of the TS was 609.7 km2, and 
its variance was 190,870. We took the NP for 2010 at 161 with a variance of 79.7. We used an LW of 1.12 and a variance = 0.0132. The 
resultant CVs for the AO, TS, PS, and LW were 4%, 72%, 45.3%, and 10.2%, respectively, compared to iPOM’s CV for wolf abundance 
at 5.5%. 

Thus, the predicted 𝑁7 = NP × PS × LW = 161 × 5.63 × 1.12 = 1015 wolves. We then took the means and variances for each of the three 
variables and calculated Var 𝑁7 using the Delta method formula above. 
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Var 𝑁7 = 79.7 × (5.63	 × 	1.12)2 + 6.5 × (161	 × 	1.12)2 + 0. 132	 ×	 (161	 × 	5.63)2  

Var 𝑁7 = 225,364  

~𝑠𝑒		5𝑁7*+,-"!8 = 475  

~CV 5𝑁7*+,-"!8 = 46.8%  

~95% CI = 85–1946 wolves  

2. Results 
Overall, CV(𝑁7*+,-"!) from Table 1.7 in [6] averaged 5.5%, while the CV based on the Delta method that we calculated was 46.8%. 
Remember the CV from Table 1.7 was estimated as 𝐶𝑉(𝑁7*+,-"!) = 	

01(./!"#$%&)
./!"#$%&

, with 𝑆𝐸(𝑁7*+,-"!) = 	
(234(./!"#$%&)5634(./!"#$%&))

(7×9.;<)
, where 

𝑁7*+,-"!, UCI, and LCI were labeled as Wolves in Table 1.7. CV(𝑁7*+,-"!) would be, on average, at least 8.4× higher based on the Delta 
method compared to that for iPOM (Table 1). Based on our initial Delta method assessment, we concluded that their CIs were 
unrealistic because numerous components of variation were omitted, in addition to the problems above. Proper analysis and inclusion 
of the empirical data sources for LW and PS increased the CV. Yet we left out components of variance that, if properly included, would 
result in an even higher variance and wider CI. 

3. Discussion 
Although iPOM’s CI is not the correct interval for the estimate of 𝑁7wolves, the Delta method indicates that their CI is wrong—the CV 
for the prediction of 𝑁7 is a fraction of what it should be. Even compared to other estimates for similar studies, the CIs on wolf 
abundance for the large scale of Montana (area = 380,832 km2) are unrealistically low. For example, a similar approach using home 
range size, mean pack size, and occupancy estimates was used to scale up and estimate wolf abundance for the known wolf range in 
Wisconsin (area = 91,000 km2; Stauffer et al. [7]). The CV of their estimate was approximately 12.1% (based on 95% credible intervals), 
and this was for a much smaller area than the state of Montana (the CV typically increases with population size; [8]). The same 
approach was used at the much smaller scale of 30,000 km2 in southwestern Alberta, Canada [9]. Even for this smaller and intensively 
sampled population of wolves (with a population size of approximately 160), the CVs ranged from 9% to 10% for the 3 years of that 
study. These two studies, which employed the same methods as that in the final report [2], also indicate that iPOM’s CIs of wolf 
population abundance, which averaged 5.5% between 2007 and 2019 for the entire state of Montana, are too low. 

In addition, the CIs used for pack size (PS) are unrealistically small for projection models. For example, from the graphs in Figure 
1.19 in 2010, the 95% CI for the Northern Rockies is approximately 5.4–5.8. This means all wolf packs in the Northern Rockies have 
5–6 members. Based on the observed annual pack sizes in Figure 1.15, this is not biologically realistic. For example, for 2010, observed 
pack sizes varied from 2 to 11, with most being between 4 and 7. Although the Northern Rockies is a subset of all packs observed, 
there is no reason that the variability in this region should be so restricted in size. iPOM uses values much lower than what is observed. 
iPOM’s mixed model, developed from data for a limited area, is being used to predict pack size over a large area, for which there has 
been no validation. Another approach would be to generate a distribution of pack sizes based on the covariate averages over the entire 
patch (or cell) and across years. This would represent the uncertainty of predicting pack sizes better. 

More importantly, the values and variance used for territory size (TS), from which NP is derived, are based on virtually no data and 
many untested assumptions. This type of model is not appropriate for projecting abundance estimates with reality. Mechanistic 
models may be suitable for relative comparisons but not for estimating or predicting population sizes (abundance). For territory sizes, 
using mixed models and a similar approach to that recommended for pack sizes would produce more realistic variance for projecting 
population sizes into the future to set wolf harvest numbers. 

The Delta method is based on a first-order Taylor series expansion of the transformed function (e.g., multiplied and divided estimates), 
which may perform well if the function is highly nonlinear (e.g., an exponential function used) over the range of values being examined 
[10]. However, in this situation, where the function multiples three variables, this is unlikely to be an issue. Other issues with the 
Delta method used here were that the covariance was not included. However, the addition (or subtraction if the covariance between 
estimates is negative) is usually a small change. Overall, the Delta method is likely to underestimate the variance slightly in this 
situation because large values are not accounted for in symmetrical CIs. 

In this discussion, we have left out other factors that would inflate the variance (and CI). They are (1) omission of the variance in the 
covariate models and (2) the inclusion of ad hoc variables, ad hoc methods, and correction factors. For the latter, we found numerous 
examples of these in iPOM [1], including 



Crabtree RL, Conner MC, Treves A. Misleading overestimation bias in methods to estimate wolf abundance that use 
spatial models. Academia Biology. 2025;in press. https://doi.org/10.31220/agriRxiv.2023.00215. 
 

 
  26 of 26 

1. Harvest intensity covariates are used as proxies for annual mortality in their TS and PS models. We cannot know whether these 
corrections are calibrated or correlated with their pack size data. Similarly, their PS model uses uncalibrated spatial density 
indices as a proxy for prey abundance. 

2. Creel [11] points out another case where an ad hoc spatial adjustment factor is used to adjust the prey densities in the TS model. 
3. iPOM’s density identifier formula (see Section 6). 
4. iPOM’s use of a territory overlap index. This factor, like their density identifier formula, biologically varies annually, yet they 

include no annual empirical inputs from wolves. 
5. iPOM incorrectly assumes that LW is constant when it is a biologically dynamic variable, as seen in numerous studies [5], 

including individual extra-territorial movements of long durations and long distances [12]. It varies with mortality, especially 
when a pack is dissolved due to human killing. 
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